Relatório de Avaliação de LLM
o1-preview
2025-01-21
2379.88
131
0.317852
3.62805
3.62805
o1-mini
2025-01-21
933.915
128
0.326939
3.68293
3.77439
gpt-4o
2025-01-21
317.122
121
0.321377
3.75
3.7622
gpt-4o-mini
2025-01-21
309.799
117
0.338521
3.68902
3.75
claude-3-5-sonnet-20240620
2025-01-21
244.255
111
0.298804
3.62805
3.65244
claude-3-5-sonnet-20241022
2025-01-21
254.239
115
0.312278
3.70732
3.66463
gemini-1.5-pro
2025-01-21
507.246
101
0.335308
3.48171
3.47561
gemini-1.5-flash
2025-01-21
764.864
2
0.267744
0.689024
0.914634
Tempo Total de Resposta (s): O tempo total levado pelo modelo para gerar todas as saídas.
Testes aprovados: O número de testes unitários que o modelo passou durante a avaliação, de um total de 164 testes.
Média CodeBLEU: Pontuação média de CodeBLEU, uma métrica para avaliar a qualidade da geração de código com base na correção sintática e semântica.
Média Pontuação de Utilidade: Avaliação média da utilidade da saída do modelo, conforme avaliado por um modelo LLM.
0: O trecho não é útil, é irrelevante para o problema.
1: O trecho é ligeiramente útil, contém informações relevantes para o problema, mas é mais fácil escrever a solução do zero.
2: O trecho é um pouco útil, requer mudanças significativas (comparado ao tamanho do trecho), mas ainda é útil.
3: O trecho é útil, mas precisa ser ligeiramente alterado para resolver o problema.
4: O trecho é muito útil, resolve o problema.
Média Pontuação de Correção Funcional: Pontuação média da correção funcional das saídas do modelo, avaliando quão bem as saídas atendem aos requisitos funcionais, avaliadas por um modelo LLM.
0 (falhando todos os testes possíveis): O trecho de código é totalmente incorreto e sem sentido.
4 (passando todos os testes possíveis): O trecho de código é totalmente correto e pode lidar com todos os casos.
Last updated