LLM-Evaluierungsbericht
Last updated
Last updated
o1-preview
2025-04-02
3264.19
134
0.320351
3.60976
3.59756
o1-mini
2025-04-02
964.977
129
0.336816
3.69512
3.75
gpt-4o
2025-04-02
228.668
128
0.310692
3.71951
3.67073
gpt-4o-mini
2025-04-02
248.679
116
0.321981
3.62805
3.61585
claude-3-5-sonnet-20240620
2025-04-02
276.394
108
0.30484
3.67683
3.66463
claude-3-5-sonnet-20241022
2025-04-02
291.706
112
0.328969
3.68902
3.70732
gemini-1.5-pro
2025-04-02
518.354
103
0.327295
3.46951
3.41463
gemini-1.5-flash
2025-04-02
763.949
0
0.261228
0.792683
1.32317
Gesamte Antwortzeit (s): Die gesamte Zeit, die das Modell benötigt hat, um alle Ausgaben zu generieren.
Bestehende Tests: Die Anzahl der Unit-Tests, die das Modell während der Bewertung bestanden hat, von insgesamt 164 Tests.
Durchschnittlicher : Durchschnittlicher CodeBLEU-Wert, eine Metrik zur Bewertung der Qualität der Codegenerierung basierend auf syntaktischer und semantischer Korrektheit.
Durchschnittlicher : Durchschnittliche Bewertung der Nützlichkeit der Ausgaben des Modells, bewertet durch ein LLM-Modell.
0: Snippet ist überhaupt nicht hilfreich, es ist irrelevant für das Problem.
1: Snippet ist leicht hilfreich, es enthält Informationen, die für das Problem relevant sind, aber es ist einfacher, die Lösung von Grund auf neu zu schreiben.
2: Snippet ist etwas hilfreich, es erfordert erhebliche Änderungen (im Vergleich zur Größe des Snippets), ist aber dennoch nützlich.
3: Snippet ist hilfreich, muss jedoch leicht geändert werden, um das Problem zu lösen.
4: Snippet ist sehr hilfreich, es löst das Problem.
Durchschnittlicher : Durchschnittlicher Wert der funktionalen Korrektheit der Ausgaben des Modells, bewertet, wie gut die Ausgaben die funktionalen Anforderungen erfüllen, bewertet durch ein LLM-Modell.
0 (alle möglichen Tests nicht bestanden): Der Code-Snippet ist völlig falsch und sinnlos.
4 (alle möglichen Tests bestanden): Der Code-Snippet ist völlig korrekt und kann alle Fälle behandeln.