LLM Bewertungsbericht

Modell
Datum
Gesamte Antwortzeit (s)
Bestehende Tests
Durchschnittlicher CodeBLEU (0-1)
Durchschnittlicher Nützlichkeitswert (0-4)
Durchschnittlicher funktionaler Korrektheitswert (0-4)

gpt-5

2025-10-01

2864.33

161

0.307856

3.84756

3.84756

gpt-5-mini

2025-10-01

2529.73

160

0.309437

3.88415

3.92073

gpt-5-nano

2025-10-01

1681.91

152

0.305554

3.82927

3.85366

gpt-4.1

2025-10-01

252.895

156

0.337819

3.89634

3.92073

claude-opus-4-1-20250805

2025-10-01

761.552

161

0.35051

3.87195

3.92683

claude-opus-4-20250514

2025-10-01

705.543

159

0.347384

3.86585

3.93293

claude-sonnet-4-5-20250929

2025-10-01

632.707

162

0.335302

3.95122

3.96341

claude-sonnet-4-20250514

2025-10-01

578.039

161

0.321841

3.90854

3.95732

gemini-2.5-pro

2025-10-01

3375.77

141

0.365963

3.82927

3.90244

gemini-2.5-flash

2025-10-01

1324.6

151

0.331303

3.84756

3.92683

Gesamte Antwortzeit (s): Die gesamte Zeit, die das Modell benötigt hat, um alle Ausgaben zu generieren.

Bestehende Tests: Die Anzahl der Unit-Tests, die das Modell während der Bewertung bestanden hat, von insgesamt 164 Tests.

Durchschnittlicher CodeBLEU: Durchschnittlicher CodeBLEU-Wert, eine Metrik zur Bewertung der Qualität der Codegenerierung basierend auf syntaktischer und semantischer Korrektheit.

Durchschnittlicher Nützlichkeitswert: Durchschnittliche Bewertung der Nützlichkeit der Ausgaben des Modells, bewertet von einem LLM-Modell.

  • 0: Snippet ist überhaupt nicht hilfreich, es ist irrelevant für das Problem.

  • 1: Snippet ist leicht hilfreich, es enthält Informationen, die für das Problem relevant sind, aber es ist einfacher, die Lösung von Grund auf neu zu schreiben.

  • 2: Snippet ist einigermaßen hilfreich, es erfordert erhebliche Änderungen (im Vergleich zur Größe des Snippets), ist aber dennoch nützlich.

  • 3: Snippet ist hilfreich, muss jedoch leicht geändert werden, um das Problem zu lösen.

  • 4: Snippet ist sehr hilfreich, es löst das Problem.

Durchschnittlicher funktionaler Korrektheitswert: Durchschnittlicher Wert der funktionalen Korrektheit der Ausgaben des Modells, der bewertet, wie gut die Ausgaben die funktionalen Anforderungen erfüllen, bewertet von einem LLM-Modell.

  • 0 (alle möglichen Tests nicht bestanden): Der Code-Snippet ist völlig falsch und bedeutungslos.

  • 4 (alle möglichen Tests bestanden): Der Code-Snippet ist völlig korrekt und kann alle Fälle behandeln.

Last updated